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Abstract. We discuss how to associate to a given group an action by auto-
morphisms on a compact abelian group. We describe how to relate questions

about the dynamics of this action to group theoretic questions, and apply this
to study ergodicity in the case of nilpotent groups. We also discuss the case

of mixing in the Heisenberg group.
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1. Background History

Dynamical systems theory starts with the study of a transformation T : X → X
of some set X, usually with some additional structure (e.g. topological or measure-
theoretic). The transformation usually preserves this structure, and one asks ques-
tions about the eventual behavior of the system. One can view the transformation
T as an semi-group action of N on X. If one requires T to be invertible then we
have a group action of Z on X. More generally, one can take any group Γ and study
its (structure-preserving) actions on a set X. Paying attention to this more general
situation leads to a richer theory, but it can be difficult to produce examples which
illustrate the theory. For example a standard requirement is that Γ be abelian,
but aside from the classical example of commuting toral automorphisms, finding
Zd actions on spaces with topological, measure-theoretic or smooth structures can
be difficult. For example, it is hard to produce commuting diffeomorphisms of a
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2 BENJAMIN R. HAYES

smooth manifold. Even if one is considering a single transformation, answering
natural questions about the dynamics of such a transformation, e.g. the existence
of invariant measures, ergodicity, and mixing can be difficult even if one has pow-
erful tools available (for example, trying to find invariant measures of a smooth
transformation on a smooth manifold).

One approach to repair this problem is to find a type of structure analogous to,
but more general than, toral automorphisms. The main technique which allows one
to say a great deal about toral automorphisms is Fourier analysis. To generalize
these ideas, we consider actions by automorphisms of a compact abelian group,
where an appropriate generalization of Fourier analysis is possible. This approach
also gives countless examples of group actions by any given group Γ on spaces with
topological and measure-theoretic structure. Moreover, by choosing one of the
nicest topological properties (compactness) and combining it with one of the nicest
algebraic properties (commutativity), one has enough structure to guarantee an
appropriate measure-theoretic structure as well as answer many natural dynamical
questions. For example, given a Zd action on a compact abelian group, one can
give precise algebraic conditions for mixing and ergodicity (see [6] Chapter VII and
II , and for a small taste Section 4 here), as well as explicit formulas for entropy
(see [6] Chapter V). In this class of group actions, it is easier to create counter-
examples to test and formulate conjectures in the study of the more general theory.
This approach also allows one to investigate connections between ergodic theory
and other areas of mathematics, particularly commutative algebra and algebraic
geometry (though we will not use much algebraic geometry here, examples are
provided in [6] Chapter II). Indeed, we will be using measure theory, topology, non-
commutative algebra, combinatorial geometry, and elementary number theory, (in
fact, we will use all of these in one proof, see Theorem 3.2.1) just to name a few.

Much of the present research on this topic has been in actions by abelian groups,
particularly Zd-actions. We will focus more on non-abelian groups, particularly
nilpotent groups in Section 3, and the particular case of the Heisenberg group in
Section 4. The Heisenberg group is an important example, being one of the simplest
cases of a non-abelian torsion-free group, and most of the results derived here grew
out of the study of the Heisenberg group as a particular example.

2. Introduction and Discussion of the Main Problem

Let Γ be a group, whose operation is written multiplicatively. The integral
group ring Z[Γ] is the set of all formula sums {

∑
γ∈Γ cγγ} with cγ ∈ Z, and all but

finitely many of the cγ nonzero. Addition in Z[Γ] is defined in the obvious way,
and multiplication is defined by extending the multiplication in Γ, and requiring
that the distributive law holds. To every element f ∈ Z[Γ] we will associate a
compact abelian group Xf and an action αf of Γ on Xf by automorphisms (i.e.
automorphisms of the group which are simultaneously homeomorphisms).

Let T = R/Z, which we think of as the unit circle. We first show that the group
of homomorphisms from Z[Γ] (as an additive group) to T, i.e. the dual group of
Z[Γ], is isomorphic to TΓ. We describe the isomorphism as follows. Let f ∈ Z[Γ]
and θ ∈ TΓ. We may write f =

∑
γ∈Γ fγγ and θ = (θγ)γ∈Γ and define

〈θ, f〉 =
∑

γ∈Γ

θγfγ ,
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which can be thought as a “inner product.” The map θ 7→ (f 7→ 〈θ, f〉) is an
isomorphism between the dual group of Z[Γ] and TΓ.

We define Γ-anti-actions on Z[Γ] and we will dualize to get a Γ-action on TΓ. For
any γ ∈ Γ, let λγ : Z[Γ] → Z[Γ] be defined by λγ(f) = γ−1f and ργ : Z[Γ] → Z[Γ]
be defined by ργ(f) = fγ. Then ργ ◦ ρδ = ρδγ and λγ ◦ λδ = λδγ . We require of the
dual actions λγ , ργ that

〈λγ(θ), f〉 = 〈f, λγ(θ)〉 = 〈θ, γ−1f〉 and 〈ργ(θ), f〉 = 〈f, ργ(θ)〉 = 〈θ, fγ〉,

more explicitly

λγ(θ)δ = 〈λγ(θ), δ〉 = 〈θ, γ−1δ〉 = θγ−1δ

ργ(θ)δ = 〈ργ(θ), δ〉 = 〈θ, δγ〉 = θδγ .

A consequence of this is that every λγ is a automorphism of TΓ as a topological
group (so that λγ is a homeomorphism), and λγ ◦ λδ = λγδ . Similarly ργ is an
automorphism of TΓ and ργ ◦ ρδ = ργδ . So we have an action by automorphisms of
TΓ.

It is helpful to think of an element θ = (θγ)γ∈Γ ∈ TΓ as a formal infinite sum∑
γ∈Γ θγγ. This is because

(2.0.1) λγ(θ) = γθ =
∑

δ∈Γ

θδ(γδ) and ργ(θ) = θγ−1 =
∑

δ∈Γ

θδδγ
−1

so our action on TΓ is really just by multiplication by group elements. In particular,
we can think of TΓ as simultaneously a left and right Z[Γ] module.

Now suppose we are given f ∈ Z[Γ]. The corresponding dual group Xf of
Z[Γ]/Z[Γ]f we think of as an orthogonal complement to Z[Γ]f under the above
inner product. So θ ∈ Xf if and only if 〈θ, gf〉 = 0 for all g ∈ Z[Γ]. If γ ∈ Γ, and
θ ∈ Xf , then

(2.0.2) 〈λγ(θ), gf〉 = 〈θ, λγ(gf)〉 = 〈θ, (γ−1g)f〉 = 0, for all g, f ∈ Z[Γ].

In particular (by applying the case γ = 1) for all θ, ψ ∈ Xf

〈θ + ψ, gf〉 = 〈θ, gf〉 + 〈ψ, gf〉 = 0, for all g ∈ Z[Γ].

Thus Xf is a subgroup of TΓ. Since for each f ∈ Z[Γ], the map θ 7→ 〈θ, f〉 is
continuous we knowXf is a closed subset of TΓ. Since TΓ is compact by Tychonoff’s
Theorem, we know Xf is a compact abelian group. By (2.0.2), the group Xf is
invariant under the automorphism λγ so it makes sense to define αγ

f by restricting
λγ to Xf . This gives our action αf by automorphism on the compact abelian group
Xf .

Define ρf =
∑

δ∈Γ fδρδ and ρf =
∑

δ∈Γ fδρ
δ , and the adjoint of f by f∗ =∑

δ∈Γ fδδ
−1. Then ρf (g) = gf for all g ∈ Z[Γ] and by (2.0.1)

ρf (θ) =
∑

δ

fδρ
δ(θ) = θ


∑

δ∈γ

fδδ
−1


 = θf∗ .

Then θ ∈ Xf if and only if

〈θ, gf〉 = 〈θf∗ , g〉 = 0

for all g ∈ Z[Γ]. By considering g = γ for any γ ∈ Γ, we see that this is the same
as θf∗ = 0. Thus Xf is the kernel of right multiplication by f∗ on TΓ, which is
invariant under left multiplication by Γ.
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Since, for any f ∈ Z[Γ], the group Xf constructed above is a compact abelian
group, there exists a Haar measure on Xf , i.e. a unique, translation-invariant,
regular, probability measure µf with µf(U) > 0 for every non-empty open subset
U of Xf . A measurable subset B ⊆ Xf is said to be invariant under αf if for all
γ ∈ Γ we have µf (αγ

f(B)4B) = 0, (here 4 denotes the symmetric difference). The
action αf is called ergodic if the only invariant subsets of Xf have measure zero or
one. The action αf is said to be mixing if for any two measurable subsets A and
B of Xf we have

lim
γ→∞

µf(A ∩ αγ
f (B)) = µf(A)µf (B).

Here γ → ∞ is interpreted in the one-point compactification of Γ, where Γ is given
the discrete topology. In turns out that for the above actions, there is an algebraic
characterization of ergodicity and mixing given as follows, (see [6] Lemma 1.2 and
Theorem 1.6).

Theorem 2.0.1. Let Γ be a countable group and let f ∈ Z[Γ], the corresponding
action αf is ergodic if and only if for every p ∈ Z[Γ]\Z[Γ]f the Γ-orbit in Z[Γ]/Z[Γ]f

{γp+ Z[Γ]f : γ ∈ Γ},

is infinite. The corresponding action αf is mixing if and only if for every p ∈
Z[Γ] \ Z[Γ]f the stabilizer in Z[Γ]/Z[Γ]f

Stab(p) = {γ ∈ Γ: γp ≡ p mod Z[Γ]f}

is finite.

Here are a few examples. Suppose Γ = Z, and n ∈ N suppose f = xn +
an−1x

n−1 + an−2x
n−2 + . . . + a1x − 1 ∈ Z[x±1] ∼= Z[Z]. Then f∗ = x−n +

an−1x
−(n−1) + an−2x

−(n−2) + . . .+ a1x
−1 − 1, and Xf is given by

{θ ∈ TZ : θf∗ = 0}.

If θ = (θk)k∈Z this condition becomes

n∑

i=0

θk+iai = 0

for all k ∈ Z, in other words

θk =

n∑

i=1

θk+iai,

(here a0 = −1 and an = 1) because of this recursive relationship one can determine
θ from (θ1 , θ2, . . . , θn). The transformation given by multiplying by x−1 acts by

(θ1, θ2, . . . , θn) 7→ (

n∑

i=1

θiai, θ1, θ2, . . . , θn−1).

So this action is isomorphic to T : Tn → Tn given by

T







θ1
θ2
θ3
...
θn







=




a1 a2 a3 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...

... . . .
. . .

...
0 0 . . . 1 0







θ1
θ2
θ3
...
θn




mod 1,
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this transformation is invertible since det(T ) = ±1. Thus the action constructed
above is a toral automorphism. The same reasoning goes through if |a0a1| = 1,
to show that αf is (isomorphic to) a toral automorphism. If instead the leading
coefficients of f are not both ±1, the above gives an action on a finite-dimensional
solenoid (see [6] Example 6.17.) One example that has led to much development is
Ledraipper’s example, taking Γ = Z2 and f = 1 + x+ y, for an in-depth discussion
of this example and its interesting dynamical properties, see [2] and [6]. More
generally, instead of considering single elements f ∈ Z[Γ], one can consider any left
Z[Γ] module, (the case we have been considering is a prinicipal left ideal), it is then
true that every action of Γ on a compact abelian group is isomorphic to one of the
actions we have constructed. We will only consider principal left-ideals in Z[Γ].

3. Nilpotent Groups and Ergodicity

Definition 3.0.1. A group Γ is called principally ergodic if for every f ∈ Z[Γ],
the corresponding action αf on Xf is ergodic.

For example, if Γ is finite, then Γ is not principally ergodic. The size of the orbit
is bounded by the size of the group, and so is finite. In this section, we establish
that if Γ is a finitely generated torsion-free nilpotent group that is not isomorphic
to the trivial group or the integers, then Γ is principally ergodic. To do this we
will establish a version of Gausss Lemma for twisted group rings, as well as discuss
Newton polyhedra which will be useful in our discussion of mixing in the case of
the Heisenberg Group. We will assume all our rings have an identity, but need not
be commutative.

3.1. Twisted Group Rings. Recall that an element r in a ring R is a unit if it
has a left inverse a and a right inverse b. Then

b = (ar)b = a(rb) = a,

so the left and right inverses agree.

Definition 3.1.1. Let R be a ring, and U its group of units. Let Γ be a group
and suppose

t : Γ × Γ → U

satisfies

(3.1.1) t(x, y)t(xy, z) = t(y, z)t(x, yz),

for all x, y, z ∈ U. We call t a twisting function , or a twisting function on Γ. Define
the twisted group ring Rt[Γ] to be a R-algebra with basis {x̃ : x ∈ Γ} multiplication
subject to x̃ỹ = t(x, y)x̃y for all x, y ∈ Γ. Equation (3.1.1) is necessary and sufficient
for multiplication to be associative. Thus a typical f ∈ Rt[Γ] may be written∑

γ∈Γ cγ γ̃, with cγ ∈ R and only finitely many of the cγ are non-zero. If f = cγ γ̃,

with cγ ∈ R \ {0}, we will call f a monomial. Twisted group rings are discussed in
more detail in [5], Chapter 1, Section 2.

Here are some examples. If t(x, y) = 1, for all x, y ∈ Γ then Rt[Γ] is the
normal group ring. If Zn is written as the multiplicative free abelian group on
{x1, x2, . . . , xn} with t(xi, xi) = 1 and t(xi, xj) = −1 for i 6= j , and extended using
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(3.1.1), then Rt[Zn] is a Laurent polynomial ring in n anti-commuting variables.
Let

H =

{


1 b c
0 1 a
0 0 1


 : a, b, c ∈ Z

}
,

be the discrete Heisenberg group. Consider Z2 as the multiplicative free abelian
group on {x, y}. Define t : Z2 ×Z2 → Z[z±1] by t(xn1ym1 , xn2ym2 ) = zn2m1 . If we
set

x =




1 0 0
0 1 1
0 0 1


 , y =




1 1 0
0 1 0
0 0 1


 , z =




1 0 1
0 1 0
0 0 1


 ,

then

xaybzc =




1 b c
0 1 a
0 0 1




and it is easily verified that z commutes with x and y and ynxm = znmxmyn. Thus
Z[H] ∼= Z[z±1]t[Z2].

3.2. Newton Polyhedra.

Definition 3.2.1. If A and B are subsets of Rn, define the Minkowski sum

A+ B = {a + b : a ∈ A,b ∈ B}.

In particular, note that for any A ⊂ Rn we have A + ∅ = ∅ + A = ∅. In case
A = {a} we shall usually write a + B instead of {a} + B, with similar remarks if
B = {b}. (Of course, we must violate this convention ifA andB are both singletons,
but we will never have to consider the case where A and B are both singletons).

If A ⊆ Rn, we use C(A) to denote the convex hull of A, which is the smallest
convex set containing A, (such a set exists, since an arbitrary intersection of convex
sets is convex). A hyperplane in Rn is a set of the form a + V where a ∈ Rn and
V is a (n− 1)-dimensional vector subspace of Rn. Equivalently such a set may be
given by

{x ∈ Rn : x · u = b}

for some u ∈ Sn−1 = {x ∈ Rn : ‖x‖ = 1} (where ‖x‖ is the usual Euclidean norm)
and b ∈ Rn. A convex polytope is a subset of Rn which is the convex hull of a finite
set. If P is a convex polytope, a vertex v of P is an element of P for which there is
a hyper-plane H such that H∩P = {v}. (This is not the usual definition, but in the
case of a convex polytope it is equivalent to the usual definition, see [4], Chapter 3,
Section 1.) It is known that every convex polytope has finitely many vertices, and
is the convex hull of its vertices, (see [4], Chapter 2, Section 4, Theorem 5.)

Definition 3.2.2. Let R be a ring and Γ a group with t a twisting function on
Γ. If f =

∑
γ∈Γ aγ γ̃ ∈ Rt[Γ], the support of f denoted Supp(f) is defined by

Supp(f) = {γ ∈ Γ: aγ 6= 0}, (note that Supp(0) = ∅).

In the ring Z[Zn] we write xa1

1 x
a2

2 · · ·xan

n as xa where a = (a1, a2, . . . , an) ∈ Zn.

Definition 3.2.3. Let R be a ring, and t be a twisting function on Zn. Given
f ∈ Rt[Zn], define the Newton polyhedron N(f) by N(f) = C(Supp(f)).

Definition 3.2.4. Let v ∈ Rn. Then the partial ordering �v on Rn is defined as
a �v b if and only if a · v > b · v.
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Note that if v is totally irrational (i.e. has rationally independent coordinates)
then the ordering �v is a monomial ordering on Zn in the following sense:

(1) �v is a total ordering;
(2) If a �v b and c ∈ Zn, then a + c �v b + c. In this case �v will be denoted

>v . (See [1], Chapter 2, Section 4.) Also notice that if A,B are bounded subsets of
Zn and v is totally irrational, then we have the following easily established equality:

max(A +B) = max(A) + max(B);

where the max is taken with respect to >v.
The following geometric interpretation can be given to �v. Given a element

a ∈ Rn we can consider the half-space H(a,v) whose boundary plane goes through
a and has an outward normal vector v. Then a �v b if and only ifH(a,v) ) H(bv).
It is not hard to see that for any bounded subset A of Rn any maximum with respect
to �v must occur on the boundary of A, which we denote by ∂A. This fact and the
geometric interpretation of �v will be crucial in the proof of the following result.

Theorem 3.2.1. (Newton Polyhedron Theorem) Suppose R is a ring without zero
divisors, and that t is a twisting function on Zn. Then for all f, g ∈ Rt[Zn] we have

N(fg) = N(f) +N(g).

Proof. If either f = 0 or h = 0 is empty the conclusion is immediate (see definition
3.2.2 and the remarks following definition 3.2.3), so suppose neither f nor g is zero.
Since multiplication of terms in Rt[Zn], corresponds to addition of vectors in Rn

we see that N(fg) ⊆ N(f) +N(g). To see the opposite inclusion, notice that since
N(f) + N(g) is a sum of two polytopes, it is also a polytope (see [4],Chapter 3,
Section 1, Theorem 4.) Let v be a vertex in N(f) + N(g). By definition v is
the intersection of a hyper-plane and N(f) +N(g). If u is the unit-normal to the
hyperplane, then v is a maximum with respect to �u or �−u . Without loss of
generality, assume v is a maximum with respect to �u . If we move u a small
amount, then the hyper-plane with outward normal u and through v still intersects
N(f)+N(g) in v only. The set of points in Rn with rational dependent coordinates
is the countable union of all (n−1)-dimensional vector subspaces with basis vectors
in Qn, in particular it has zero n-dimensional measure. So the totally irrational
vectors are dense in Rn, and we can find w so that w is totally irrational and the
hyper-plane through v with outward normal w hits P only in v. We now order the
elements of N(f) and N(g) with respect to >w. Since N(f) is bounded, we can
find a maximal element a ∈ N(f), which must be in ∂N(f). If there were more
than one maximal element by convexity we could find a line segment between them,
which must be an edge. Continuing this edge to its endpoints we see that a non-zero
scalar multiple of w is the difference between two lattice points, which is impossible
since w is totally irrational. Similarly we see that N(g) has a unique maximum
b with respect to >w. Clearly these maximal points must be vertices. Thus if we
look at the vertices, which must be lattice points, of N(f), N(g) then a,b are the
maximum with respect to >w of the vertices of N(f), N(g) respectively. Thus by
our earlier remark

a + b = max(N(f) +N(g)) = v

so the monomials corresponding to a,b are the only ones whose product corresponds
to v . We need to check that the monomials corresponding to a,b do not multiply

together to be 0. If c1x̃a, c2x̃b are any monomials with c1, c2 ∈ R \ {0} then,
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c1x̃ac2x̃b = c1c2t(x
a, yb)xa+b and c1c2t(x

a, yb) is not zero, since R has no zero
divisors. Thus v ∈ N(fg), and since v was an arbitrary vertex by taking convex
hulls we conclude N(fg) ⊇ N(f) +N(g). �

Corollary 3.2.1. If R is a ring without zero divisors, and t is a twisting function
on Zn, then Rt[Zn] has no zero divisors.

Proof. If f, g ∈ Rt[Zn] \ {0} then N(f), N(g) 6= ∅, hence N(fg) = N(f) +N(g) 6=
∅. �

One could easily establish the above corollary using any monomial ordering on
Zn, but Theorem 3.2.1 gives a much better quantitative result.

3.3. Gauss’s Lemma and the Main Result. Recall that in a commutative
unique factorization domain R, a greatest common divisor (denoted gcd) of a finite
set {c1, c2, . . . , cm} ⊆ R exists and is unique up to unit multiples. We set gcd(0) = 0
and gcd(c1, c2, . . . , cm) = 1 if gcd(c1, c2, . . . , cm) is a unit.

Definition 3.3.1. Let Γ be a group and let R be a commutative unique factoriza-
tion domain, with t a twisting function on Γ. If f ∈ Rt[Γ], write f =

∑
γ∈Γ fγ γ̃.

Let c(f) = gcd({fγ : γ ∈ Supp(f)}) and call c(f) the content of f. We say that f
is primitive if c(f) = 1.

Under the preceding assumptions, c(f) ∈ R. Thus it is central in Rt[Γ], since R is
commutative. If f ∈ Rt[Γ] we may write f = c(f)f0 with f0 primitive. Conversely
if f = cf0 with c ∈ R and f0 is primitive, then c(f) = c.

Lemma 3.3.1. Let Γ be a group, and R a ring with group of units U. Suppose that

t is a twisting function on Γ. If I is an two-sided ideal in R, let Ĩ be the two-sided
ideal in Rt[Γ] generated by all the elements of I, and let U be the group of units of

R/I. Let t : Γ × Γ → U be defined as t(x, y) = t(x, y) Then

Rt[Γ]/Ĩ ∼= (R/I)t[Γ].

Proof. Let φ : Rt[Γ] → (R/I)t[Γ] be the homomorphism which for each γ ∈ Γ sends
γ̃ to γ̃ and sends c ∈ R to c ∈ R/I (where c is the residue of c modulo I) for each
c ∈ R. Observe that

φ


∑

γ∈Γ

cγ γ̃


 =

∑

γ∈Γ

cγ γ̃ = 0

if and only if cγ ∈ I for all γ. This happens if and only if
∑

γ∈Γ cγ γ̃ ∈ Ĩ. Thus

kerφ = Ĩ and φ is surjective, so the claim follows. �

By an integral domain we shall mean a commutative ring without zero divisors.
Suppose R is a ring and a is central in R. Given b ∈ R we say that a divides b and
write a|b, if there is c ∈ R such that b = ac. Since a is central b = ca, so there is no
ambiguity about left or right divisors.

Proposition 3.3.1. Let Γ be a group and suppose that for any integral domain R,
every twisted group ring Rt[Γ] has no zero divisors. Let R be an integral domain,
and t a twisting function on Γ.

(a) Suppose p is prime in R. Then whenever f, g ∈ Rt[Γ] and p - f, p - g, then
p - fg.
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(b)(Gauss’s Lemma) Assume R is a commutative unique factorization domain.
If f, g ∈ Rt[Γ] are primitive, then so is fg.

(c) (Content Lemma) Suppose R is a commutative unique factorization domain
and f, g ∈ Rt[Γ] then c(fg) = c(f)c(g).

Proof. (a) Since p is central, we can say p - f without ambiguity, and the two-sided
ideal in Rt[Γ] generated by p consists of multiples of p. Thus the desired claim is
equivalent to the statement that Rt[Γ]/(pRt[Γ]) has no zero divisors. Since p is
prime, R/pR is an integral domain, and the desired claim follows by Lemma 3.3.1
and the hypothesis on Γ.

(b) Let p ∈ R be irreducible. Since R is a unique factorization domain p is
prime. Because f, g are primitive p - f, and p - g. By (a) p - fg. Since p ∈ R was
an arbitrary irreducible element, we know fg is primitive.

(c) We can write f = c(f)f0 , g = c(g)g0, where f0, g0 are primitive. Hence
fg = c(f)f0c(g)g0 = c(f)c(g)f0g0 and f0g0 is primitive by (b); proving the desired
claim (see the remark before the statement of Lemma 3.3.1). �

The hypothesis on Γ in the preceding proposition will certainly be satisfied if Γ is
a unique product group, that is if for any two finite subsets A,B of Γ there is y ∈ Γ
which can be written uniquely as ab with a ∈ A and b ∈ B. This is proved as follows.
Let Γ be a unique product group , and R an integral domain with twisting function
t. If f, g ∈ Rt[Γ] then Supp(f) and Supp(g) are finite sets and hence there is an
element y ∈ Γ which can be written uniquely as ab with a ∈ Supp(f), b ∈ Supp(g),
and thus the term corresponding to ab cannot be cancelled in the product fg. It
is known that any group which has a linear ordering preserved by right (or left)
multiplication is a unique product group, and that the class of groups having such
a ordering includes free groups and poly-infinite-cyclic groups (See [5], Chapter 13,
Sections 1 and 2). For our next proposition, we will use the following lemma.

Lemma 3.3.2. Suppose A is a ring which is also an algebra over the ring R.
Suppose {ai}i∈I is basis for A over R. Suppose S is a ring and φ : A→ S satisfies
the following conditions

(i) φ(a+ b) = φ(a) + φ(b) for all a, b ∈ A,
(ii) φ(rai) = φ(r)φ(ai), for all i ∈ I, and r ∈ R
(iii) φ(1) = 1
(iv) φ(aiaj) = φ(ai)φ(aj), for all i, j ∈ I. Then φ is a ring homomorphism.

Proof. It suffices to check that φ(xy) = φ(x)φ(y) for all x, y ∈ A. Given x, y ∈ A
since {ai}i∈I is a basis, we know we may write

x =
∑

i∈I

xiai, y =
∑

i∈I

yiai,

with xi, yi ∈ R for all i, and all but finitely many of the xi, yi are non-zero. Then
by our given assumptions,

φ(xy) = φ


∑

i,j

xiaiyjaj


 =

∑

i,j

φ(xi)φ(ai)φ(yj)φ(aj) =

(
∑

i∈I

φ(xi)φ(ai)

)(
∑

i∈I

φ(yi)φ(ai)

)
= φ(x)φ(y).

�
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Proposition 3.3.2. Let Γ be a group, and let N be a central subgroup of Γ. Let R
be a ring. Then

R[Γ] ∼= R[N ]t[Γ/N ]

for some twisting function t.

Proof. Fix a coset representation Γ/N = {Nai}i∈I . For any i, j ∈ I we have that
NaiNaj = Nai,j for some ai,j ∈ {ai : i ∈ I}. Hence, aiaj = ni,jai,j for some
ni,j ∈ N. Define t(Nai, Naj) = ni,j. We define φ : R[Γ] → R[N ]t[Γ/N ] as follows.
For any γ ∈ Γ we have γ = nγai(γ), with nγ ∈ N and i(γ) ∈ I. Given f =

∑
γ∈Γ cγγ

with cγ ∈ R let φ(f) =
∑

γ∈Γ cγnγÑai(γ). The ring R[Γ] is an algebra over R with

basis Γ, and it follows from the previous lemma that φ is a homomorphism, (this

uses the fact that N is central) it is also surjective. Suppose
∑

γ∈Γ cγnγÑai(γ) = 0.
Then

∑

γ∈Γ

cγnγÑai(γ) =
∑

i∈I


 ∑

γ∈Nai

cγnγ


 Ñai.

By independence of {Ñai : Nai ∈ Γ/N} over R[N ] we conclude for each i that∑
γ∈Nai

cγnγ = 0. For fixed i and γ, δ ∈ Nai we have nγ = nδ implies that γ = δ.
So by independence of N over R we conclude that cγ = 0 for all γ ∈ Γ. Thus φ is
an isomorphism. �

We now prove the main theorem of this section.

Theorem 3.3.1. Let Γ be a group and suppose N is a finitely generated torsion-
free central subgroup such that {1} 6= N 6= Γ and such that Rt[Γ/N ] has no zero
divisors for all integral domains R and twisting functions t. Then Γ is principally
ergodic.

Proof. If f = 0, then Z[Γ]/{0} ∼= Z[Γ], so our claim follows since Γ is necessarily
infinite. Suppose f 6= 0, and that h ∈ Z[Γ] is such that the orbit of h is finite in

Z[Γ]/Z[Γ]f. Let x ∈ Γ \ N. Consider the set {xh, x2h, . . . , } where the bar denotes
the residue modulo Z[Γ]f. By assumption it must be finite. Hence there exists n ∈ N
such that xnh ≡ h mod Z[Γ]f. Thus there exists g1 ∈ Z[Γ] such that xnh = h+g1f,
i.e.

(3.3.1) (xn − 1)h = g1f.

Similarly, letting z ∈ N \ {1}, we can find m ∈ N and g2 ∈ Z[Γ] such that

(3.3.2) (zm − 1)h = g2f.

Since N is a finitely generated torsion-free abelian group, it is isomorphic to Zk for
some k ∈ N. Thus Z[N ] is a unique factorization domain. By Proposition 3.3.2 for
some twisting function t we have

(3.3.3) Z[Γ] ∼= Z[N ]t[Γ/N ].

Applying the Content Lemma to (3.3.1) we see that c(h) = c(g1)c(f), since x /∈ N.
Similarly using (3.3.2) we conclude that (zm − 1)c(h) = c(g2)c(f), since z ∈ N.
Combining we deduce that

(zm − 1)c(g1)c(f) = c(g2)c(f).

Since f is nonzero, the content of f is nonzero. Since Z[N ] is an integral domain
we apply the cancellation law and find that (zm−1)c(g1) = c(g2). Thus (zm−1)|g2
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so we can write g2 = (zm − 1)q, for some q ∈ Z[Γ]. Using equation (3.3.2) and the
fact that the assumptions imply that Z[Γ] has no zero divisors, (by (3.3.3) and the
assumptions on Γ/N) we see that h = qf ∈ Z[Γ]f. �

Let Γ be a group, recall that the upper central series {Zn(Γ)} is defined induc-
tively with Z1(Γ) the center of Γ, and Zn+1(Γ) is defined by requiring that Zn+1(Γ)
is the center of Γ/Γn(Γ). The group Γ is said to be n-step nilpotent if there is an
integer n such that Γ = Zn(Γ). In order to apply the preceding Theorem to torsion-
free nilpotent groups we need the following three lemmas which are proved in [5].
In [5], these are Lemma 3.4.2, Lemma 11.1.3, and Lemma 13.1.6 respectively.

Lemma 3.3.3. If Γ is a finitely generated nilpotent group, then all subgroups of Γ
are finitely generated.

Lemma 3.3.4. Let Γ be a group whose center is torsion-free. Then for all n ∈ N
we have Zn+1(Γ)/Zn(Γ) is torsion-free abelian.

Lemma 3.3.5. Let Γ be a group. If there is a series

{1} = Γ0 / Γ1 / Γ2 / · · · / Γn = Γ

with Γi+1/Γi torsion-free abelian, then Γ has a linear ordering preserved by right
multiplication.

We now apply Theorem 3.3.1 to finitely-generated torsion-free nilpotent groups.

Theorem 3.3.2. Let Γ be a finitely-generated, torsion-free, nilpotent group not
isomorphic to the integers or the trivial group. Then Γ is principally ergodic.

Proof. We show that Γ satisfies the hypothesis of Theorem 3.3.1. If Γ is abelian
then since Γ is finitely generated and torsion-free our hypothesis implies that it is
isomorphic to Zn for some n ∈ N, and n ≥ 2. Then Theorem 3.3.1 applies with
N = Z, using Corollary 3.2.1.

If Γ is k-step nilpotent with k ≥ 2, then since Γ is nilpotent, 1 6= Z1(Γ) 6= Γ and
Z1(Γ) is torsion-free since Γ is, it is also finitely generated by Lemma 3.3.3. By
definition we have

Γ/Z1(Γ) . Γ/Z2(Γ) · · · . Γ/Zk(Γ) ∼= {1}.

But

(Γ/Zi(Γ))/(Γ/Zi+1(Γ)) ∼= Zi+1(Γ)/Zi(Γ),

which is torsion-free abelian by Lemma 3.3.4 . Thus Γ/Z1(Γ) has a linear ordering
preserved by right multiplication by Lemma 3.3.5 , and is thus a unique product
group. Thus Theorem 3.3.1 applies with N = Z1(Γ). �

For example, let Hn be the group of all upper-triangular integer matrices with
ones on the diagonal, the group Hn is finitely generated, and we can show Hn is
torsion-free nilpotent as follows. Consider

A =




1 0 . . . 1
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1






12 BENJAMIN R. HAYES

that is A has ones on the diagonal, and in the upper right, but nowhere else. Then
Z ∼= Γ1 = 〈A〉 ⊆ Z1(Hn) ( in fact 〈A〉 = Z1(Hn) but we will not need that). In
Hn/Γ1 consider the residues of

A1 =




1 0 . . . 1 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1



, A2 =




1 0 . . . 0 0
0 1 0 . . . 1
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1



.

That is, A1 only has 1’s on the diagonal and in the first row and n − 1st column,
and A2 only has 1’s on the diagonal and in the second row and last column. Then
Z2 ∼= 〈A1Γ1, A2Γ2〉 ⊆ Z1(Hn/Γ1). Continuing diagonally we see that we have a
series Z ∼= Γ1 / Γ2 · · · / Γn−1 = Hn, with Γi/Γi−1 ⊆ Z1(Hn/Γi−1) and Γi/Γi−1

torsion-free. This implies that Hn is torsion-free nilpotent. For n ≥ 3 this group is
not isomorphic to the integers, so the preceding Theorem applies.

The preceding Theorem fails if Γ = Z, if f ∈ Z[Z] = Z[x±1] has a root which is
a root of unity, then we can find a divisor p of f, g ∈ Z[x±1] and n ∈ Z \ {0} such
that

(xn − 1) = gp.

If we write f = pq, the
(xn − 1)q = gf.

Then q /∈ Z[Z]f but the orbit of q in Z[Z]/Z[Z]f is 1, x, x2, . . . , xn.
We leave it as an exercise to verify that for f ∈ Z[Z], the corresponding action

αf is ergodic if and only if f has a root which is a root of unity.

3.4. General Facts About Ergodicity. So far in our discussion of this problem
we have assumed that our groups are finitely generated. We now solve the problem
for groups that are not finitely generated.

Theorem 3.4.1. Let Γ be a group which is not finitely generated, then Γ is prin-
cipally ergodic.

Proof. Let f ∈ Z[Γ] and p ∈ Z[Γ] have finite orbit in Z[Γ]/Z[Γ]f. Let Γ0 be the
group generated by the elements in Supp(f) ∪ Supp(p). Since Γ is not finitely
generated, we may construct a sequence of groups {Γn} such that Γn ⊆ Γn+1 and
Γn+1 is generated over Γn by a single element γn+1 ∈ Γ \ Γn. For all n ∈ N, let
Γnp = {γp + Z[Γ]f : γ ∈ Γn} and let Γp = {γp + Z[Γ]f : γ ∈ Γ}. Suppose that Γp
is finite. Then since Γnp ⊆ Γn+1p we have that

|Γ0p| ≤ |Γ1p| ≤ |Γ2p| ≤ · · · .

Also |Γnp| ≤ |Γp| < ∞. Since |Γnp| is a bounded increasing sequence of integers
there exists N ∈ N such that

|ΓNp| = |ΓN+1p| = |ΓN+2p| = · · · .

Since these sets have the same finite size and Γnp ⊆ Γn+1p we have

ΓNp = ΓN+1p = ΓN+2p = · · · .

Thus γN+1p ≡ yp mod Z[Γ]f for some y ∈ ΓN . Thus (γN+1 − y)p = gf for some
g ∈ Z[Γ]. Write g = g1 + g2 where Supp(g1) ⊆ ΓN and Supp(g2) ∩ ΓN = ∅. Then

(3.4.1) γN+1p− g2f = g1f + yp.
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Since Supp(p), Supp(f) ⊆ ΓN the support of the right hand side of (3.4.1) is entirely
contained in ΓN . However every element in the support of the left hand side of
(3.4.1) takes the form ab with b ∈ ΓN and a /∈ ΓN , thus the support of the left
hand side is disjoint from ΓN . Hence the right hand side of (3.4.1) must vanish so

that γN+1p = g1f and thus p = γ−1
N+1g1f ∈ Z[Γ]f. �

We can use the same technique as above to deduce a general fact about relating
ergodicity of actions by some group to a group it has finite index in.

Theorem 3.4.2. Let Γ be a group and ∆ a subgroup of Γ; assume [Γ : ∆] <∞. If
Γ is principally ergodic, then so is ∆.

Proof. We prove the contrapositive, suppose there exists f ∈ Z[∆] and p ∈ Z[∆] \
Z[∆]f such that {δp + Z[∆]f : δ ∈ ∆} is finite. We claim that p /∈ Z[Γ]f, suppose
q ∈ Z[Γ] is such that p = qf. Then write q = q1 + q2 where q1 ∈ Z[∆] and
Supp(q2) ⊆ Γ\∆. Then p−q1f = q2f , and Supp(q2) ⊆ Γ\∆, and since Supp(f) ⊆ ∆
we have Supp(q2f) ⊆ Γ \∆, but q2f = p− q1f ∈ Z[∆]. These two facts imply that
q2f = 0, hence p = q1f, a contradiction. Thus p /∈ Z[Γ]f. Now if the ∆-orbit of p
is {δ1p + Z[∆]f, δ2p + Z[∆]f, . . . , δnp + Z[∆]f} and Γ/∆ = {a1∆, a2∆, . . . , am∆},
then the Γ-orbit of p is:

δ1p+ Z[Γ]f, δ2p+ Z[Γ]f, . . . γnp+ Z[Γ]f
a1δ1p+ Z[Γ]f, a1δ2p+ Z[Γ]f, . . . a1δnp+ Z[Γ]f

...
...

...
...

amδ1p+ Z[Γ]f, a1δ2p+ Z[Γ]f, . . . amγnp+ Z[Γ]f.

So the Γ-orbit of p is finite. �

4. Mixing and The Heisenberg Group

In this section, we investigate when the actions we have constructed are mixing.
We first handle the case of a Zn-action and then apply this to give a sufficient
condition for a mixing H-action. As in the case of ergodicity above, we see that
elements in Z[Γ] like γ − 1 are important to our investigation. For this reason we
find the irreducible factorization of xa − 1 with a ∈ Zn.

4.1. Mixing Zd-Actions. Recall that the d-th cyclotomic polynomial φd is defined
by

φd(x) =
∏

j:gcd(j,d)=1,1≤j≤d

(x− e2πij/n)

and is a monic, irreducible, (over Z[x] and Z[x±1]) integral polynomial. Further

xn − 1 =
∏

d|n

φd(x),

is the irreducible factorization of xn − 1.

Definition 4.1.1. A generalized cyclotomic polynomial is a Laurent polynomial of
the form φd(xa) for some d ∈ N, where a ∈ Zn satisfies gcd{a1, a2, . . . , an} = 1.

Lemma 4.1.1. Every generalized cyclotomic polynomial is irreducible in Z[Zn].
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Proof. Let d ∈ N and a ∈ Zn satisfy gcd{a1, a2, . . . , an} = 1. Suppose φd(x
a) = fg.

By multiplying by units, we may assume without loss of generality that 1 has
nonzero coefficient in f and g. Applying the Newton Polyhedron Theorem, we
conclude that

N(φd(x
a)) = N(f) +N(g).

Since {0} ∈ N(f), {0} ∈ N(g) we have N(f) ⊆ N(f) +N(g) and similarly N(g) ⊆
N(f)+N(g). By the above equation, N(f)+N(g) lies entirely in the line spanned by
a and so N(f) and N(g) must be contained in this line, since N(f) ⊆ N(f)+N(g)
and N(g) ⊆ N(f) + N(g). Since a has relatively prime coordinates, it spans the
lattice points in this line as a subspace of the module Zn. Since N(f) and N(g)

consist of lattice points in this line, it follows that we can find polynomials f̃ , g̃ such

that f = f̃(xa), g = g̃(xa). Then

φd(x
a) = f̃(xa)g̃(xa),

by irreducibility of φd in the one-variable case we conclude that one of f̃ , or g̃ is a
unit, so one of f or g is a unit. �

Corollary 4.1.1. Given a ∈ Zn write a = da′ with a′ having relatively prime
coordinates. The irreducible factorization for xa − 1 is

∏

j|d

φj(x
a
′

).

The following is known, but we reproduce a proof for completeness.

Proposition 4.1.1. For any f ∈ Z[Zn], the corresponding action is not mixing if
and only if f is divisible by some generalized cyclotomic polynomial in Z[Zn].

Proof. If f = 0, then αf is mixing for trivial reasons, so suppose f 6= 0. Suppose
αf is not mixing. Let p ∈ Z[Zn] \Z[Zn]f have infinite stabilizer in Z[Zn]f. Then as
before we can find a ∈ Zn and g ∈ Z[Zn] such that

(xa − 1)p = gf.

Write a = da′ where a′ has relatively prime coordinates. Then

((xa
′

)d − 1)p = gf.

Since p /∈ Z[Zn]f it follows that (xa − 1) - g. Thus by the above corollary there is

some j|d such that φj(x
a
′

) - g. Since φj(x
a
′

) divides the left-hand side of the above
equation, and is prime and does not divide g, it must divide f. Conversely, suppose
f ∈ Z[Zn] has f = φj(x

a)p for some a with relatively prime coordinates. Then
p /∈ Z[Zn]f, and we can find g ∈ Z[Zn] such that gφj(x

a) = xja − 1. Then

(xja − 1)p = gf

so Stab(p) ⊇ {xnja : n ∈ N} and is thus infinite. So αf is not mixing. �

For n = 1, we know by the above proposition that αf is not mixing if and only
if f has a root which is a root of unity. As we remarked before, f having a root
of unity is equivalent to αf not being ergodic. So in the case n = 1, we know αf

is ergodic if and only if αf is mixing. This fails for n > 1, because αf is always
ergodic (by Theorem 3.3.2), whereas the above proposition shows αf can fail to be
mixing.
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4.2. Mixing in The Heisenberg Group. In order to apply the above to the case
of H we will need to classify the automorphisms of H.

Proposition 4.2.1. Any automorphism, ψ, of H takes the form

(4.2.1) ψ(x) = xa1yb1zc1

ψ(y) = xa2yb2zc2

ψ(z) = zε,

where ε = a1b2 − a2b1 with ai, bi, ci ∈ Z and the only restriction is that ε = ±1,
and that ψ is extended multiplicatively. Conversely, suppose ψ satisfies 4.2.1 with
ai, bi, ci ∈ Z and ε = a1b2 − a2b1 = ±1. If ψ is extended multiplicatively, it is an
automorphism.

Proof. Let ψ be an automorphism of H. Since 〈z〉 is the center of H it is a charac-
teristic subgroup and thus φ(〈z〉) = 〈z〉. Let

ψ(x) = xa1yb1zc1

ψ(y) = xa2yb2zc2 .

ψ(z) = zε,

with ε = ±1. Then

ψ(y)ψ(x) = xa1+a2yb1+b2zc1+c2+a1b2,

and

ψ(x)ψ(y)ψ(z) = xa1+a2yb1+b2zc1+c2+ε+a2b1 .

Since yx = xyz we must have that ε = a1b2 − a2b1. Conversely, suppose ψ satisfies

(4.2.1). By direction computation and the formula (xaybzc)n = (xanybnzcn+(n

2
)ab),

we find ψ is a homomorphism. Suppose ψ(xaybzc) = 1. Since the x and y exponents

of ψ(xaybzc) corresponds to multiplying

[
a
b

]
by the matrix

[
a1 a2

b1 b2

]
,

whose determinant is ±1 we conclude that a = b = 0. But ψ(zc) = zcε, so cε = 0
and thus xaybzc = 1, so ψ is injective. To see that ψ is surjective suppose that
xaybzc ∈ H. Since a1b2 − a2b1 = ±1 we can find integers α, β such that

[
a1 a2

b1 b2

] [
α
β

]
=

[
a
b

]
.

Then ψ(xαyβ) = xaybzc′ , for some c′ ∈ Z. Setting d = (c − c′)/ε we have
ψ(xαyβzd) = xaybzc, so ψ is an automorphism. �

Proposition 4.2.2. Let xaybzc ∈ H then there exists ψ ∈ Aut(H) such that
ψ(xaybzc) = xnzk for some n, k ∈ Z.

Proof. If b = 0, this is clear. If a = 0 then the automorphism defined by x 7→
y, y 7→ x, z 7→ z−1 works. So suppose a, b 6= 0. Let d = gcd(a, b) 6= 0, and l =
lcm(a, b) 6= 0. Let a1, a2 ∈ Z be such that aa1 + ba2 = d, and b1, b2 ∈ Z be such
that −b1a = b2b = l. Then

a1b2 − a2b1 = a1
l

b
+ a2

l

a
=

l

ab
(aa1 + a2b) =

ld

ab
= 1.
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By the preceding proposition we may define ψ ∈ Aut(H) by requiring that

ψ(x) = xa1yb1

ψ(y) = xa2yb2

ψ(z) = z.

By direct computation ψ(xaybzc) = xdzk for some k ∈ Z. �

Recall that a subset of a ring R is a right ideal if it contains 0, and is closed
under addition and right multiplication by elements of R. Similarly we have a
notion of left ideal. A ring R is right Noetherian if every increasing chain of right
ideals eventually stabilizes, with similar notions for left Noetherian. Given a ring
R and a ∈ R we will use either 〈a〉r or aR for the right ideal generated by a, with
similar notations Ra, and 〈a〉l for left ideals (and multiply-generated left or right
ideals). We reserve 〈a〉 for the two-sided ideal generated by a, (again with similar
notation for multiply-generated two-sided ideals).

Lemma 4.2.1. Let R be a ring without zero-divisors, and suppose a ∈ R \ {0} has
no right inverse. If R is a right-Noetherian ring, then

∞⋂

n=1

Ran = {0}.

Proof. Suppose b ∈
⋂∞

n=1 Ra
n \ {0}, then b = rna

n for some rn ∈ R. Then
rn+1a

n+1 = rna
n, since R has no zero divisors and a 6= 0 we conclude that

rn+1a = rn, so
〈rn〉r = 〈rn+1a〉r ⊆ 〈rn+1〉r .

If rn+1 ∈ 〈rn〉r then for some q ∈ R we have

rn+1 = rnq = rn+1aq.

Since b 6= 0, we have rn+1 6= 0 so the above implies 1 = aq, contrary to the
hypothesis that a has no right inverse. Thus

〈r1〉r ( 〈r2〉r ( · · ·

and R is not right Noetherian. �

The above theorem is false if we drop the assumption that R has no zero divisors,
for instance if R = Z/6Z then

∞⋂

n=1

2nR = 2R ∩ 4R = {0, 2, 4},

and 2 is not invertible modulo 6.
The above theorem is also false if we drop the assumption that R is right Noe-

therian. Let

R = Z
[
x,

2

xn
: n ∈ N

]

Then

2 ∈

∞⋂

n=1

xnR \ {0}

and x is not a unit in R. If x were a unit in R, then we could find p, q ∈ Z[x] such
that

x(p(x) + 2q(1/x)) = 1
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letting d be the degree of q, we find

xdp(x) + 2xdq(1/x)− xd−1 = 0.

But this polynomial is not the zero polynomial, for if q1 is the linear term of q, the
coefficient of xd−1 in the above polynomial is 2q1−1 6= 0, so we have a contradiction.

We now give a necessary condition for any f ∈ Z[H] to have a corresponding
action αf which is not mixing, which of course gives a sufficient for αf to be mixing.

Since 〈z〉 is the center of H it is not difficult to see that

Z[H]/〈z − 1〉 ∼= Z[H/〈z〉] ∼= Z[Z2].

By standard abuse of terminology, we identify Z[H]/〈z − 1〉 with Z[Z2].

Lemma 4.2.2. Let f ∈ Z[H] \ {0}. If αf is not mixing, then either φd(z
±1)|f

for some d ∈ N or there exists elements γ ∈ H \ 〈z〉, and g ∈ Z[H] \ 〈z − 1〉, and
p ∈ Z[H] \ Z[H]f such that

(γ − 1)p = gf

and f - p, where f, p are the residues of f, p modulo z − 1.

Proof. Suppose αf is not mixing, then as in the proof of Theorem 3.3.1 we may
find p ∈ Z[H] \ 〈z − 1〉, and g ∈ Z[H] \ {0} and γ ∈ H \ {1} such that

(4.2.2) (γ − 1)p = gf.

First suppose γ ∈ 〈z〉 say γ = zk for some k ∈ Z \ {0}. Since the center of H is
< z > we apply the Content Lemma to conclude that

(zk − 1)c(p) = c(g)c(f)

If (zk−1)|c(g), then (zk−1)|g and cancelling (zk−1)p = gf we conclude p ∈ Z[H]f
a contradiction. So zk − 1 - c(g) and we can find d|k such that φd(z

±1)|c(f). This
implies φd(z

±1)|f.
Now suppose γ /∈ 〈z〉 and that for all d we have φd(z

±1) - f. Then in particular
z − 1 - f. By applying an automorphism to (4.2.2) we may assume, without loss
of generality, that γ = xnzk for some n, k ∈ Z (note that any automorphism sends
either z to z or z to z−1 and thus fixes 〈z − 1〉) so that

(4.2.3) (xnzk − 1)p = gf.

By hypothesis (z − 1) - f, so applying the Content Lemma and cancelling common
factors of z − 1 dividing p or g we may assume that (z − 1) - p and (z − 1) - g.
Suppose we can find g̃, p̃ such that (xnzk − 1) - g̃ mod z − 1 and

(4.2.4) (xnzk − 1)p̃ = g̃f.

Then f - p̃, and applying Proposition 4.1.1 gives the desired conclusion. It remains

to show we can find such a g̃, p̃. If g satisfies (xnzk − 1) - g, then we are done. If

not, then we can find q such that g = (xnzk − 1)q, since g 6= 0 we have q 6= 0. Thus

((xnzk − 1)p = (xnzk − 1)qf

so since f, q 6= 0 we have p = qf. Thus we can find g1, p1 ∈ Z[H] \ 〈z − 1〉 and
α, β ∈ N such that g = (xnzk − 1)q + (z − 1)αg1 and p = qf + (z − 1)βp1. By
expanding (4.2.3) and cancelling, (since Z[H] has no zero divisors by Corollary
3.2.1) we conclude

(xnzk − 1)p1 = g1f.
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(Note that α = β by the Content Lemma since z − 1 - f.) If (xnzk − 1) - g1, then
we are done, else for some q1, g2 ∈ Z[H] we have g1 = (xnzk − 1)q1 + (z − 1)g2. By
definition of g1 we have

g = (xnzk − 1)(q + (z − 1)αq1) + (z − 1)α+1g2 ∈ 〈xnzk − 1, (z − 1)2〉r .

Continuing we may find sequences {gN}, {pN} satisfying

(xnzk − 1)pN = gNf,

and either (xnzk − 1) - gn (and we are done in this case), or

g ∈ 〈xnzk − 1, (z − 1)N〉r .

Thus either the sequence produces a desired gN or

g ∈

∞⋂

N=1

〈xnzk − 1, (z − 1)N 〉r.

We show the latter is impossible. Suppose

g ∈

∞⋂

N=1

〈xnzk − 1, (z − 1)N 〉r

write g =
∑

i g
(i)yi with g(i) ∈ Z[x±1, z±1] (the (i) is not an exponent, and is meant

to distinguish gi and g(i)). Then since g ∈
⋂∞

N=1〈x
nzk −1, (z−1)N〉r we must have

for all i that

g(i) ∈

∞⋂

N=1

(
(xnzk − 1)Z[x±1, z±1] + (z − 1)N)Z[x±1, z±1]

)
.

Write (n, k) = d(n′, k′) where gcd(n′, k′) = 1. Then by Corollary 4.1.1 we have

∞⋂

N=1

(
(xnzk − 1)Z[x±1, z±1] + (z − 1)N )Z[x±1, z±1]

)
⊆

∞⋂

N=1

⋂

j|d

(
φj(x

n′

zk′

)Z[x±1, z±1] + (z − 1)N Z[x±1, z±1]
)

=

⋂

j|d

∞⋂

N=1

(
φj(x

n′

zk′

)Z[x±1, z±1] + (z − 1)NZ[x±1, z±1]
)
.

Since φj(x
n′

zk′

) is prime, for all j we have Z[x±1, z±1]/〈φj(x
n′

zk′

)〉 is an integral
domain, and is Noetherian, since Z[x±1, z±1] is. Further z− 1 is not a unit modulo

φj(x
n′

zk′

)Z[x±1, z±1]. For if 1 = φj(x
n′

zk′

)k1 +(z−1)k2, with k1, k2 ∈ Z[x±1, z±1]

then 1 ≡ φj(x
n′

)k2 mod z − 1, which is impossible since

Z[x±1, z±1]/〈z − 1〉 ∼= Z[x±1],

and φj(x
n′

) is not a unit in Z[x±1]. Thus by Lemma 4.2.1 applied to the ring

Z[x±1, z±1]/〈φj(x
n′

zk′

〉 we conclude that for all j

∞⋂

N=1

(
φj(x

n′

zk′

)Z[x±1, z±1] + (z − 1)N Z[x±1, z±1]
)

= φj(x
n′

zk′

)Z[x±1, z±1].
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Thus for all i we have

g(i) ∈
⋂

j|d

φj(x
n′

zk′

)Z[x±1, z±1] = (xnzk − 1)Z[x±1, z±1].

Since this is true for all i, we must have g ∈ (xnzk − 1)Z[H]. But applying the
cancellation law to (4.2.3) we conclude p ∈ Z[H]f, a contradiction. Thus there

must be some N such that (xnzk − 1) - gN , as noted before this completes the
proof. �

Corollary 4.2.1. Let f ∈ Z[H] \ {0}. If αf is not mixing, then either φd(z
±1)|f

for some d ∈ N or f , the residue of f modulo 〈z − 1〉, is divisible by a generalized
cyclotomic in Z[Z2].

Proof. If f is not divisible by φd(z
±1)|f for some d ∈ N, then by Lemma 4.2.2, we

can find elements g ∈ Z[H] \ 〈z − 1〉, and p ∈ Z[H] \ 〈z − 1〉 and γ ∈ H \ 〈z〉, with

f - p such that

(γ − 1)p = gf.

Taking residues modulo z − 1, we have

(γ − 1)p = gf.

Since Z[H]/〈z − 1〉 ∼= Z[Z2], and γ 6= 1 mod z − 1, this says that γ ∈ Stab(p) for
the action of Z2 on Z[Z2]/Z2[Z2]f. Since γ − 1, p, g and f are not 0 modulo z − 1,

and f - p, applying Proposition 4.1.1 we find that f is divisible by a generalized
cyclotomic polynomial in Z[Z2]. �

One might hope that the condition stated in the above corollary is both necessary
and sufficient, but an example shows that this is not true. Consider f = x+z−2 ∈
Z[H]. Then f ≡ x − 1 mod z − 1, which is a generalized cyclotomic polynomial.
However αf is still mixing. Suppose that αf is not mixing, then by Lemma 4.2.2,
we can find p ∈ Z[H] \ 〈z − 1〉, and γ ∈ H \ 〈z〉 with x− 1 - p such that

(γ − 1)p = gf.

Taking residues modulo z − 1, we find

(γ − 1)p = g(x− 1).

Since x− 1 - p, this equation tells us that x− 1|γ − 1, so that γ = xnzk, for some
n, k ∈ Z, with n 6= 0. Writing p =

∑
j pjy

j , g =
∑

j gjy
j with pj, gj ∈ Z[x±1, z±1],

we have that
∑

j

(xnzk − 1)pjy
j =

∑

j

gjy
j(x+ z − 2) =

∑

j

gj(xz
j + z − 2)yj .

Equating coefficients

(4.2.5) (xnzk − 1)pj = gj(xz
j + z − 2),

for all j. We claim that xzj + z − 2 is irreducible in Z[x±1, z±1]. Suppose

xzj + z − 2 = q1q2,

with q1, q2 ∈ Z[x±1, z±1]. If we think of f, q1 and q2 as elements of Z[x±1][z±1], we
see that the x-degree of q1, q2 have to add up to the x-degrees of f. So by multiplying
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by units, we may assume one of q1, q2 say q1 takes the form q1 = xp1(z) + p2(z)
and q2 ∈ Z[z±1]. Then

xzj + z − 2 = xp1(z)q2 + p2(z)q2

and so p1(z)q2 = zj and each of p1(z), q2 is a unit. Thus xzj +z−2 is irreducible in
Z[x±1, z±1], further it is not a cyclotomic polynomial. Therefore, by (4.2.5) we find
that xnzk − 1 divides gj for all j, which implies that g ∈ (xnzk − 1)Z[H]. Writing
g = (xnzk − 1)q we have

(xnzk − 1)p = (xnzk − 1)qf,

and cancelling gives p ∈ Z[H]f, which is a contradiction. So αf is mixing.

5. Closing Remarks

Theorems 3.3.2 and 3.4.1 give a complete classification of principal ergodicity for
finitely-generated torsion-free nilpotent groups, since we have noted that Z and {1}
are not principally ergodic. It would be interesting to find a complete classification
of all principally ergodic groups, at least in the torsion-free case. By Theorem 3.4.1,
we may as well take our groups to be finitely generated. From our experience with
Zd and torsion-free nilpotent groups it seems that failing to be principally ergodic
is a rank one phenomenon. To this end, I make the following two claims.

Conjecture 5.1. Every poly-infinite-cyclic group not isomorphic to the trivial
group or the integers is principally ergodic.

Conjecture 5.2. Every free group of rank at least two is principally ergodic.

(Note that by Theorems 3.3.2 and 3.4.1 it suffices to handle the case of the free
group on two generators). More generally, I believe the following should be true.

Conjecture 5.3. Every torsion-free group which is not principally ergodic is either
the trivial group or virtually cyclic.

It would also be of interest to see if the converse of Theorem 3.4.2 holds. More
generally, it would be nice to know how principal ergodicity behaves under natural
group theoretic operations, e.g. quotients, direct products, free products and semi-
direct products. Also, a complete classification of when αf is mixing for f ∈ Z[H]
is still not known. Corollary 4.2.1 is a starting point. If φd(z

±1)|f for some d ∈ N,
then as in Proposition 4.1.1, it is not hard to see that αf is not mixing. Thus

one really needs to understand the condition that f is divisible by a generalized
cyclotomic polynomial in Z[Z2], i.e. that f can be written as f = φd(γ)q+(z−1)h
where γ ∈ H \ 〈z〉, d ∈ N and q, h ∈ Z[H]. One could attempt to understand
conditions on q and h, perhaps by decomposing q and h as we did in the proof of
Corollary 4.2.1, but so far no additional progress has been made in this direction.
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